Skip to content

sake

Sake Request package.

A set of utils tools to interogate Seqoia dAta laKE

Modules:

  • duckdb_query

    A map that associate query name to duckdb sql query.

  • obj

    Define Sake dataclass, main API of sake_request.

  • utils

    Some utils function.

Classes:

  • Sake

    Class that help user to extract variants from sake.

Sake dataclass

Sake(
    *,
    sake_path: Path,
    preindication: str,
    threads: int | None = cpu_count(),
    activate_tqdm: bool | None = False,
    aggregations_path: Path | None = None,
    annotations_path: Path | None = None,
    cnv_path: Path | None = None,
    partitions_path: Path | None = None,
    prescriptions_path: Path | None = None,
    samples_path: Path | None = None,
    str_path: Path | None = None,
    transmissions_path: Path | None = None,
    variants_path: Path | None = None,
    genotype_columns: list[str] | None = None,
)

Class that help user to extract variants from sake.

Methods:

add_annotations

add_annotations(
    variants: DataFrame,
    name: str,
    version: str,
    *,
    rename_column: bool = True,
    select_columns: list[str] | None = None,
    read_threads: int = 1,
    chrom_basename: str | None = None,
) -> DataFrame

Add annotations to variants.

Require id column in variants value.

Parameters:

  • variants (DataFrame) –

    DataFrame you wish to annotate

  • name (str) –

    Name of annotations you want add to your variants

  • version (str) –

    version of annotations you want add to your variants

  • rename_column (bool, default: True ) –

    prefix annotations column name with annotations name

  • select_columns (list[str] | None, default: None ) –

    name of annotations column (same as is in annotations file) you want add to your DataFrame, if None all column are added

  • chrom_basename (str | None, default: None ) –

    basename of annotation filename use to detect format annotation file directory struct. If value is not set, function try to detect it automagicly.

Return

DataFrame with annotations column.

Source code in src/sake/obj.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def add_annotations(
    self,
    variants: polars.DataFrame,
    name: str,
    version: str,
    *,
    rename_column: bool = True,
    select_columns: list[str] | None = None,
    read_threads: int = 1,
    chrom_basename: str | None = None,
) -> polars.DataFrame:
    """Add annotations to variants.

    Require `id` column in variants value.

    Parameters:
      variants: DataFrame you wish to annotate
      name: Name of annotations you want add to your variants
      version: version of annotations you want add to your variants
      rename_column: prefix annotations column name with annotations name
      select_columns: name of annotations column (same as is in annotations file) you want add to your DataFrame, if None all column are added
      chrom_basename: basename of annotation filename use to detect format annotation file directory struct. If value is not set, function try to detect it automagicly.

    Return:
      DataFrame with annotations column.
    """
    if chrom_basename is None:
        # chrom_basename Not set so we try found it
        # chromosome column is present get first value or try default value
        chrom_basename = str(variants.get_column("chr").first()) if "chr" in variants.schema else "1"

    annotation_path_result = sake._utils.fix_annotation_path(
        self.annotations_path,  # type: ignore[arg-type]
        name,
        version,
        self.preindication,
        chrom_basename=chrom_basename,
    )
    if annotation_path_result is not None:
        (annotation_path, split_by_chr) = annotation_path_result
    else:
        # No annotations path return input
        return variants

    schema = polars.read_parquet_schema(annotation_path)
    if "id" in schema:
        del schema["id"]
    columns = ",".join([f"a.{col}" for col in schema if select_columns is None or col in select_columns])

    if split_by_chr:
        iterator = sake._utils.wrap_iterator(
            self.activate_tqdm,  # type: ignore[arg-type]
            variants.group_by(["chr"]),
            total=variants.get_column("chr").unique().len(),
        )
        annotation_path = annotation_path.parent

        query_obj = sake._utils.QueryByGroupBy(
            self.threads // read_threads,  # type: ignore[operator]
            f"{annotation_path}/{{}}.parquet",
            "add_annotations",
            {"columns": columns},
            select_columns,
        )
        if read_threads == 1:
            all_annotations = list(map(query_obj, iterator))
        else:
            with multiprocessing.get_context("spawn").Pool(processes=read_threads) as pool:
                all_annotations = list(pool.imap(query_obj, iterator))

        result = polars.concat([df for df in all_annotations if df is not None])
    else:
        query_str = sake.QUERY["add_annotations"].format(columns=columns)

        result = self.db.execute(
            query_str,
            {
                "path": annotation_path,
            },
        ).pl()

    if rename_column:
        result = result.rename(
            {col: f"{name}_{col}" for col in schema if select_columns is None or col in select_columns},
        )

    return result

add_genotypes

add_genotypes(
    variants: DataFrame,
    *,
    keep_id_part: bool = False,
    select_columns: list[str] | None = None,
    number_of_bits: int = 8,
    read_threads: int = 1,
) -> DataFrame

Add genotype information to variants DataFrame.

Require id column in variants value.

Parameters:

  • variants (DataFrame) –

    DataFrame you wish to add genotypes

  • keep_id_part (bool, default: False ) –

    method add id_part column, set to True to keep_it

  • select_columns (list[str] | None, default: None ) –

    name of genotype column you want add to your DataFrame, if None all column are added

  • number_of_bits (int, default: 8 ) –

    number of bits use to compute partitions

  • read_threads (int, default: 1 ) –

    number of partitions file read in parallel

Return

DataFrame with genotype information.

Source code in src/sake/obj.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def add_genotypes(
    self,
    variants: polars.DataFrame,
    *,
    keep_id_part: bool = False,
    select_columns: list[str] | None = None,
    number_of_bits: int = 8,
    read_threads: int = 1,
) -> polars.DataFrame:
    """Add genotype information to variants DataFrame.

    Require `id` column in variants value.

    Parameters:
      variants: DataFrame you wish to add genotypes
      keep_id_part: method add id_part column, set to True to keep_it
      select_columns: name of genotype column you want add to your DataFrame, if None all column are added
      number_of_bits: number of bits use to compute partitions
      read_threads: number of partitions file read in parallel

    Return:
      DataFrame with genotype information.
    """
    if select_columns is None:
        select_columns = [
            *variants.schema.names(),
            "sample",
            *self.genotype_columns,  # type: ignore[misc]
        ]
    else:
        select_columns = [*variants.schema.names(), "sample", *select_columns]

    variants = sake.utils.add_id_part(variants, number_of_bits=number_of_bits)

    if keep_id_part:
        select_columns.append("id_part")

    all_genotypes: list[polars.DataFrame | None] = []
    iterator = sake._utils.wrap_iterator(
        self.activate_tqdm,  # type: ignore[arg-type]
        variants.group_by(["id_part"]),
        total=variants.get_column("id_part").unique().len(),
    )

    query = sake._utils.QueryByGroupBy(
        self.threads // read_threads,  # type: ignore[operator]
        f"{self.partitions_path}/id_part={{}}/0.parquet",
        "genotype_query",
        select_columns=select_columns,
        expressions=[
            polars.col("ad").cast(polars.List(polars.String)).list.join(",").alias("ad"),
        ],
    )

    if read_threads == 1:
        all_genotypes = list(map(query, iterator))
    else:
        with multiprocessing.get_context("spawn").Pool(processes=read_threads) as pool:
            all_genotypes = list(pool.imap(query, iterator))

    return polars.concat([df for df in all_genotypes if df is not None])

add_sample_info

add_sample_info(
    _variants: DataFrame,
    *,
    select_columns: list[str] | None = None,
) -> DataFrame

Add sample information.

Required sample column in polars.DataFrame.

Parameters:

  • _variants (DataFrame) –

    DataFrame you wish to add sample information

  • select_columns (list[str] | None, default: None ) –

    name of sample information column you want add to your DataFrame, if None all column are added

Return

DataFrame with sample information.

Source code in src/sake/obj.py
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def add_sample_info(
    self,
    _variants: polars.DataFrame,
    *,
    select_columns: list[str] | None = None,
) -> polars.DataFrame:
    """Add sample information.

    Required sample column in polars.DataFrame.

    Parameters:
      _variants: DataFrame you wish to add sample information
      select_columns: name of sample information column you want add to your DataFrame, if None all column are added

    Return:
      DataFrame with sample information.
    """
    # sampless_path are set in __post_init__
    schema = polars.read_parquet_schema(self.samples_path)  # type: ignore[arg-type]

    if select_columns is None:
        select_columns = [col for col in schema if col != "sample"]

    columns = ",".join([f"s.{col}" for col in schema if col in select_columns])

    query = sake.QUERY["add_sample_info"].format(columns=columns)

    return self.db.execute(
        query,
        {
            "path": str(self.samples_path),
        },
    ).pl()

add_transmissions

add_transmissions(
    variants: DataFrame,
    *,
    select_columns: list[str] | None = None,
    read_threads: int = 1,
) -> DataFrame

Add transmissions information.

Required pid_crc column in polars.DataFrame.

Parameters:

  • variants (DataFrame) –

    DataFrame you wish to add genotypes

  • select_columns (list[str] | None, default: None ) –

    name of transmissions column you want add to your DataFrame, if None all column are added

  • read_threads (int, default: 1 ) –

    number of partitions file read in parallel

Return

DataFrame with genotype information.

Source code in src/sake/obj.py
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def add_transmissions(
    self,
    variants: polars.DataFrame,
    *,
    select_columns: list[str] | None = None,
    read_threads: int = 1,
) -> polars.DataFrame:
    """Add transmissions information.

    Required pid_crc column in polars.DataFrame.


    Parameters:
      variants: DataFrame you wish to add genotypes
      select_columns: name of transmissions column you want add to your DataFrame, if None all column are added
      read_threads: number of partitions file read in parallel

    Return:
      DataFrame with genotype information.
    """
    if select_columns is None:
        select_columns = list(variants.schema)
        select_columns += [
            f"{prefix}_{suffix}"
            for suffix in self.genotype_columns  # type: ignore[union-attr]
            for prefix in ["index", "father", "mother"]
        ]
        select_columns += ["origin"]
    else:
        select_columns = [*variants.schema.names(), *select_columns, "origin"]

    all_transmissions = []
    iterator = sake._utils.wrap_iterator(
        self.activate_tqdm,  # type: ignore[arg-type]
        variants.group_by(["pid_crc"]),
        total=variants.get_column("pid_crc").unique().len(),
    )
    query = sake._utils.QueryByGroupBy(
        self.threads // read_threads,  # type: ignore[operator]
        f"{self.transmissions_path}/{{}}.parquet",
        "add_transmissions",
        select_columns=select_columns,
        expressions=[
            polars.col("father_gt").cast(polars.UInt8).alias("father_gt"),
            polars.col("index_gt").cast(polars.UInt8).alias("index_gt"),
            polars.col("mother_gt").cast(polars.UInt8).alias("mother_gt"),
            polars.col("father_dp").cast(polars.UInt32).alias("father_dp"),
            polars.col("index_dp").cast(polars.UInt32).alias("index_dp"),
            polars.col("mother_dp").cast(polars.UInt32).alias("mother_dp"),
            polars.col("father_gq").cast(polars.UInt32).alias("father_gq"),
            polars.col("index_gq").cast(polars.UInt32).alias("index_gq"),
            polars.col("mother_gq").cast(polars.UInt32).alias("mother_gq"),
            polars.col("father_ad").cast(polars.List(polars.String)).list.join(",").alias("father_ad"),
            polars.col("index_ad").cast(polars.List(polars.String)).list.join(",").alias("index_ad"),
            polars.col("mother_ad").cast(polars.List(polars.String)).list.join(",").alias("mother_ad"),
        ],
    )

    if read_threads == 1:
        all_transmissions = list(map(query, iterator))
    else:
        with multiprocessing.get_context("spawn").Pool(processes=read_threads) as pool:
            all_transmissions = list(pool.imap(query, iterator))

    return polars.concat([df for df in all_transmissions if df is not None])

add_variants

add_variants(_data: DataFrame) -> DataFrame

Use id of column polars.DataFrame to get variant information.

Source code in src/sake/obj.py
352
353
354
def add_variants(self, _data: polars.DataFrame) -> polars.DataFrame:
    """Use id of column polars.DataFrame to get variant information."""
    return self.__add_all_variants("add_variants", _data)

all_variants

all_variants() -> DataFrame

Get all variants of a target in present in Sake.

Source code in src/sake/obj.py
356
357
358
def all_variants(self) -> polars.DataFrame:
    """Get all variants of a target in present in Sake."""
    return self.__add_all_variants("all_variants")

get_annotations

get_annotations(
    name: str,
    version: str,
    *,
    rename_column: bool = True,
    select_columns: list[str] | None = None,
) -> DataFrame | None

Get all variants of an annotations.

Parameters:

  • name (str) –

    Name of annotations you want add to your variants

  • version (str) –

    version of annotations you want add to your variants

  • rename_column (bool, default: True ) –

    prefix annotations column name with annotations name

  • select_columns (list[str] | None, default: None ) –

    name of annotations column (same as is in annotations file) you want add to your DataFrame, if None all column are added

Return

DataFrame with annotations column.

Source code in src/sake/obj.py
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
def get_annotations(
    self,
    name: str,
    version: str,
    *,
    rename_column: bool = True,
    select_columns: list[str] | None = None,
) -> polars.DataFrame | None:
    """Get all variants of an annotations.

    Parameters:
      name: Name of annotations you want add to your variants
      version: version of annotations you want add to your variants
      rename_column: prefix annotations column name with annotations name
      select_columns: name of annotations column (same as is in annotations file) you want add to your DataFrame, if None all column are added

    Return:
      DataFrame with annotations column.
    """
    annotation_path_result = sake._utils.fix_annotation_path(
        self.annotations_path,  # type: ignore[arg-type]
        name,
        version,
        self.preindication,
    )
    if annotation_path_result is not None:
        (annotation_path, split_by_chr) = annotation_path_result
    else:
        # No annotations path return input
        return None

    schema = polars.read_parquet_schema(annotation_path)
    if "id" in schema:
        del schema["id"]
    columns = ",".join([f"a.{col}" for col in schema if select_columns is None or col in select_columns])

    query = sake.QUERY["get_annotations"].format(columns=columns)
    if split_by_chr:
        annotations_path = sake._utils.get_chromosome_path(annotation_path.parent)
        variants_path = sake._utils.get_chromosome_path(self.variants_path)  # type: ignore[arg-type]
        iterator = sake._utils.wrap_iterator(
            self.activate_tqdm,  # type: ignore[arg-type]
            zip(annotations_path, variants_path),
        )

        all_annotations = []
        for annotation_path, variant_path in iterator:
            chrom_result = self.db.execute(
                query,
                {
                    "annotation_path": str(annotation_path),
                    "variant_path": str(variant_path),
                },
            ).pl()

            all_annotations.append(chrom_result)

        result = polars.concat([df for df in all_annotations if df is not None])
    else:
        result = self.db.execute(
            query,
            {
                "annotation_path": annotation_path,
                "variant_path": f"{self.variants_path}/*.parquet",
            },
        ).pl()

    if rename_column:
        result = result.rename(
            {col: f"{name}_{col}" for col in schema if select_columns is None or col in select_columns},
        )

    return result

get_cnv

get_cnv(
    chrom: str,
    start: int,
    stop: int,
    tools: str,
    sv_type: str,
    *,
    exact: bool = True,
) -> DataFrame

Get cnv from chromosome between start and stop.

Source code in src/sake/obj.py
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
def get_cnv(
    self,
    chrom: str,
    start: int,
    stop: int,
    tools: str,
    sv_type: str,
    *,
    exact: bool = True,
) -> polars.DataFrame:
    """Get cnv from chromosome between start and stop."""
    start_comp = "==" if exact else ">"
    stop_comp = "==" if exact else "<"

    return self.db.execute(
        sake.QUERY["get_cnv"].format(start_comp=start_comp, stop_comp=stop_comp),
        {
            "path": str(self.cnv_path / "groupby" / tools / sv_type / f"{chrom}.parquet"),  # type: ignore[operator]
            "start": start,
            "stop": stop,
        },
    ).pl()

get_cnv_by_sample

get_cnv_by_sample(sample: str, tools: str) -> DataFrame

Get cnv by sample.

Source code in src/sake/obj.py
457
458
459
def get_cnv_by_sample(self, sample: str, tools: str) -> polars.DataFrame:
    """Get cnv by sample."""
    return polars.read_parquet(self.cnv_path / "samples" / sample / f"{tools}.parquet")  # type: ignore[operator]

get_interval

get_interval(
    chrom: str,
    start: int,
    stop: int,
    comment: IntoExpr | None = None,
) -> DataFrame

Get variants from chromosome between start and stop.

Source code in src/sake/obj.py
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
def get_interval(
    self,
    chrom: str,
    start: int,
    stop: int,
    comment: polars.typing.IntoExpr | None = None,
) -> polars.DataFrame:
    """Get variants from chromosome between start and stop."""
    df = self.db.execute(
        sake.QUERY["get_interval"],
        {
            "path": str(self.variants_path / f"{chrom}.parquet"),  # type: ignore[operator]
            "chrom": chrom,
            "start": start,
            "stop": stop,
        },
    ).pl()

    if comment is None:
        return df
    return df.with_columns(comment)

get_intervals

get_intervals(
    chroms: list[str],
    starts: list[int],
    stops: list[int],
    comments: list[IntoExpr] | None = None,
) -> DataFrame

Get variants in multiple intervals.

Source code in src/sake/obj.py
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
def get_intervals(
    self,
    chroms: list[str],
    starts: list[int],
    stops: list[int],
    comments: list[polars.typing.IntoExpr] | None = None,
) -> polars.DataFrame:
    """Get variants in multiple intervals."""
    all_variants = []
    minimal_length = min(len(chroms), len(starts), len(stops))
    if comments is None:
        iterator = sake._utils.wrap_iterator(
            self.activate_tqdm,  # type: ignore[arg-type]
            zip(chroms, zip(starts, stops)),
            total=minimal_length,
        )
    else:
        iterator = sake._utils.wrap_iterator(
            self.activate_tqdm,  # type: ignore[arg-type]
            zip(chroms, zip(starts, zip(stops, comments))),
            total=minimal_length,
        )

    for multi_value in iterator:
        tmp = list(
            sake._utils.flatten_tuples(multi_value),
        )
        chrom, start, stop, *comment = tmp
        all_variants.append(
            self.get_interval(chrom, start, stop, comment),
        )

    return polars.concat(all_variants)

get_variant_of_prescription

get_variant_of_prescription(prescription: str) -> DataFrame

Get all variants of a prescription.

Source code in src/sake/obj.py
517
518
519
520
521
522
523
524
525
526
527
def get_variant_of_prescription(self, prescription: str) -> polars.DataFrame:
    """Get all variants of a prescription."""
    return self.db.execute(
        sake.QUERY["get_variant_of_prescription"],
        {
            "sample_path": str(
                self.prescriptions_path / f"{prescription}.parquet",  # type: ignore[operator]
            ),
            "variant_path": f"{self.variants_path}/*.parquet",
        },
    ).pl()

get_variant_of_prescriptions

get_variant_of_prescriptions(
    prescriptions: list[str],
) -> DataFrame

Get all variants of multiple prescriptions.

Source code in src/sake/obj.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def get_variant_of_prescriptions(self, prescriptions: list[str]) -> polars.DataFrame:
    """Get all variants of multiple prescriptions."""
    iterator = sake._utils.wrap_iterator(self.activate_tqdm, prescriptions)  # type: ignore[arg-type]

    all_variants = []
    for pid in iterator:
        all_variants.append(
            self.db.execute(
                sake.QUERY["get_variant_of_prescription"],
                {
                    "sample_path": str(self.prescriptions_path / f"{pid}.parquet"),  # type: ignore[operator]
                    "variant_path": f"{self.variants_path}/*.parquet",
                },
            ).pl(),
        )

    return polars.concat(all_variants)

utils

Some utils function.

Functions:

  • add_id_part

    Compute and add id_part of polars.DataFrame.

  • add_recurrence

    Compute recurrence of variant.

  • get_list

    Replace list by value at index or null_value if index is out of bound.

  • list2string

    Convert list in string.

add_id_part

add_id_part(
    data: DataFrame, number_of_bits: int = 8
) -> DataFrame

Compute and add id_part of polars.DataFrame.

Source code in src/sake/utils.py
16
17
18
19
20
21
22
23
24
25
26
27
def add_id_part(data: polars.DataFrame, number_of_bits: int = 8) -> polars.DataFrame:
    """Compute and add id_part of polars.DataFrame."""
    # it's look like dark magic but it's just bit shift without bit shift operator
    return data.with_columns(
        id_part=polars.when(polars.col("id") // pow(2, 63) == 1)
        .then(
            pow(2, number_of_bits) - 1,
        )
        .otherwise(
            polars.col("id") * 2 // pow(2, 64 - number_of_bits),
        ),
    )

add_recurrence

add_recurrence(data: DataFrame) -> DataFrame

Compute recurrence of variant.

Requirement: - id: variant id - gt: genotype - sample: id of sample associate to genotype

Parameters:

  • data (DataFrame) –

    polars.DataFrame where compute recurrence.

Return

data with sake_AC et sake_nhomalt columns.

Source code in src/sake/utils.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def add_recurrence(data: polars.DataFrame) -> polars.DataFrame:
    """Compute recurrence of variant.

    Requirement:
    - id: variant id
    - gt: genotype
    - sample: id of sample associate to genotype

    Parameters:
      data: polars.DataFrame where compute recurrence.

    Return:
      data with sake_AC et sake_nhomalt columns.
    """
    recurrence = (
        data.select("id", "gt", "sample")  # reduce memory impact by select only column usefull column before run unique
        .unique()
        .group_by("id")
        .agg(
            sake_AC=polars.sum("gt"),
            sake_nhomalt=(polars.col("gt") - 1).sum(),
        )
    )

    return data.join(recurrence, on="id", how="left")

get_list

get_list(
    data: DataFrame,
    columns: list[str],
    *,
    index: int = 0,
    null_value: Any = 0,
) -> DataFrame

Replace list by value at index or null_value if index is out of bound.

Parameters:

  • data (DataFrame) –

    polars.DataFrame with list columns from which value is to be extracted

  • columns (list[str]) –

    List of columns containing a list from which a value is to be extracted

  • index (int, default: 0 ) –

    index of list you want extract

  • null_value (Any, default: 0 ) –

    value set if index is out of list

Source code in src/sake/utils.py
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
def get_list(
    data: polars.DataFrame,
    columns: list[str],
    *,
    index: int = 0,
    null_value: typing.Any = 0,
) -> polars.DataFrame:
    """Replace list by value at index or null_value if index is out of bound.

    Parameters:
      data: polars.DataFrame with list columns from which value is to be extracted
      columns: List of columns containing a list from which a value is to be extracted
      index: index of list you want extract
      null_value: value set if index is out of list
    """
    return data.with_columns(
        [polars.col(name).list.get(index, null_on_oob=True).fill_null(null_value).alias(name) for name in columns],
    )

list2string

list2string(
    data: DataFrame,
    *,
    columns: list[str],
    separator: str = ",",
) -> DataFrame

Convert list in string.

Source code in src/sake/utils.py
57
58
59
60
61
def list2string(data: polars.DataFrame, *, columns: list[str], separator: str = ",") -> polars.DataFrame:
    """Convert list in string."""
    return data.with_columns(
        [polars.col(name).cast(polars.List(polars.String)).list.join(separator).alias(name) for name in columns],
    )